Channel Correlations in Wave Transport through Chaotic Systems

Ulrich Kuhl (University of Nice-Sophia Antipolis, France)

We investigate experimentally by means of microwave cavities the channel correlations in a four port system. More precisely we study the correlation $C(\kappa) = \overline{\langle \sigma_{ab}(\kappa) \sigma_{cd}(\kappa) \rangle} - \overline{\langle \sigma_{ab}(\kappa) \rangle \langle \sigma_{cd}(\kappa) \rangle}$, where $\sigma_{ab}(\nu) = |S_{ab}(\nu)|^2$ with $a \neq b, \kappa$ is the channel coupling strength, $\langle \cdots \rangle$ represents an average over frequency and system configurations and the $\overline{\cdots}$ over different combinations of the indices. We distinguish between two different possibilities, the so-called C_{Σ} -correlation (exactly one identical index) and C_{Λ} -correlation (no equal index). We observe that C_{Σ} and C_{Λ} are anti-correlated and thus give opposite contributions to the universal conductance fluctuations. All measured correlations are in good agreement with random matrix calculations once including coupling and absorption appropriately.